Real-Time ECG-Based Detection of Fatigue Driving Using Sample Entropy

نویسندگان

  • Fuwang Wang
  • Hong Wang
  • Rongrong Fu
چکیده

In present work, the heart rate variability (HRV) characteristics, calculated by sample entropy (SampEn), were used to analyze the driving fatigue state at successive driving stages. Combined with the relative power spectrum ratio β/(θ + α), subjective questionnaire, and brain network parameters of electroencephalogram (EEG) signals, the relationships between the different characteristics for driving fatigue were discussed. Thus, it can conclude that the HRV characteristics (RR SampEn and R peaks SampEn), as well as the relative power spectrum ratio β/(θ + α) of the channels (C3, C4, P3, P4), the subjective questionnaire, and the brain network parameters, can effectively detect driving fatigue at various driving stages. In addition, the method for collecting ECG signals from the palm part does not need patch electrodes, is convenient, and will be practical to use in actual driving situations in the future.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Online Detection of Driver Fatigue Using Steering Wheel Angles for Real Driving Conditions

This paper presents a drowsiness on-line detection system for monitoring driver fatigue level under real driving conditions, based on the data of steering wheel angles (SWA) collected from sensors mounted on the steering lever. The proposed system firstly extracts approximate entropy (ApEn)featuresfromfixedslidingwindowsonreal-timesteeringwheelanglestimeseries. Afterthat, this system linearizes t...

متن کامل

Real-Time EEG-Based Detection of Fatigue Driving Danger for Accident Prediction

This paper proposes a real-time electroencephalogram (EEG)-based detection method of the potential danger during fatigue driving. To determine driver fatigue in real time, wavelet entropy with a sliding window and pulse coupled neural network (PCNN) were used to process the EEG signals in the visual area (the main information input route). To detect the fatigue danger, the neural mechanism of d...

متن کامل

Driver Fatigue Detection System Using Electroencephalography Signals Based on Combined Entropy Features

Driver fatigue has become one of the major causes of traffic accidents, and is a complicated physiological process. However, there is no effective method to detect driving fatigue. Electroencephalography (EEG) signals are complex, unstable, and non-linear; non-linear analysis methods, such as entropy, maybe more appropriate. This study evaluates a combined entropy-based processing method of EEG...

متن کامل

Research on Classification Algorithm of Reduced Support Vector Machine for Driving Fatigue Detection

In order to improve the accuracy and real-time performance of driving fatigue detection, a driving fatigue detection method is proposed based on reduced support vector machine algorithm. The ECG indicators are treated as human fatigue characterization indicators in the method. The human ECG can be obtained through experiment in different state, and PERCLOS value in selecting and controlling env...

متن کامل

Automatic Detection of Driver Fatigue Using Driving Operation Information for Transportation Safety

Fatigued driving is a major cause of road accidents. For this reason, the method in this paper is based on the steering wheel angles (SWA) and yaw angles (YA) information under real driving conditions to detect drivers' fatigue levels. It analyzes the operation features of SWA and YA under different fatigue statuses, then calculates the approximate entropy (ApEn) features of a short sliding win...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Entropy

دوره 20  شماره 

صفحات  -

تاریخ انتشار 2018